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1. INTRODUCTION

Optimal control and optimal shape design problems for the Navier-Stokes equations arise in many
important practical applications, such as design of optimal profiles [7], drag minimization [9], [11],
and heating and cooling [12], among others. Typically, optimal control problems for the Navier-
Stokes equations combine Lagrange multiplier techniques to enforce the constraints and to derive an
optimality system (see, e.g., [11]-[12]), with mixed Galerkin discretization for the state equations.
Resulting methods are well-studied theoretically, for example, an abstract framework that can be
used for the analyses of such optimal control methods has been suggested in [13]. However, the use
of Lagrange multipliers and mixed Galerkin discretizations is associated with some complications in
the numerical computations which can reduce the overall efficiency and robustness of corresponding
algorithms. For example, resulting discrete problems are in general indefinite. Similarly, it is now
well-understood that stability of mixed discretizations does not allow one to choose independently
the approximation spaces for the velocity and the pressure, and that these spaces are subject to
a restrictive stability condition known as the inf-sup (or LBB) condition; see [8]. One possibility
to remedy these difficulties is to consider optimal control methods in which the Navier-Stokes
constraint is treated by augmented Lagrangian techniques; see [6]. Nevertheless, the use of mixed
Galerkin discretization in the method of [6] still requires approximation by finite element spaces
that are subject to the inf-sup condition.

In this paper we consider another alternative which involves the use of least-squares variational
principles. Such principles have been successfully used for the approximation of the incompressible,
steady-state Navier-Stokes equations, see, e.g., [2]-[3], [14], and [15], among others. The main idea
of least-squares methods is to consider minimization of appropriately defined quadratic functionals,
i.e., least-squares variational principles correspond to minimization, rather than to a saddle-point
optimization problem. This allows one to circumvent the inf-sup condition and to achieve stable
discretizations using, e.g., equal order interpolation for all unknowns. Likewise, in a neighborhood
of the minimizer, the Hessian matrix is guaranteed to be symmetric and positive definite. As a
result, using, e.g., Newton linearization combined with continuation with respect to the Reynolds
number, one can devise methods that will encounter only symmetric and positive definite linear
systems in the solution process.
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In this paper the least-squares approach will be extended to optimal control problems. Our goal is
to develop a finite element method for boundary control of the steady-state, incompressible Navier-
Stokes equations in which least-squares principles are used to derive the first-order optimality
system. As a result, discrete problems associated with this system now correspond to positive
definite algebraic problems. It appears that with the exception of [1], where an optimal design
problem arising in semiconductor applications has been treated by a least-squares method, this is
the first application of least-squares ideas for optimal flow control.

The rest of this paper is organized as follows. In §2 we introduce the optimal control problem along
with two particular model problems. The least-squares approach for this problem is developed in
§3. In the same section we show how the least-squares method specializes to the model problems.
Section 4 concludes the paper with presentation of some computational results obtained with the
least-squares optimal control method.

Throughout this paper Ω will denote a bounded, open region in R2 with Lipschitz continuous
boundary Γ. We use the standard Sobolev space notation Hs(Ω) for the set of all functions defined
on Ω such that all their derivatives of order up to s are square integrable. Similarly, for the norm
and the inner product on Hs(Ω) we use the standard notations ‖ · ‖s and (·, ·)s, respectively. As
usual, when s = 0 we use L2(Ω) instead of H0(Ω). With Hs(Ω) we shall denote the corresponding
vector Sobolev space, for example, H1(Ω) = H1(Ω)×H1(Ω). H1

0 (Ω) will denote the subspace of all
functions in H1(Ω) that vanish on Γ, and L2

0(Ω) will denote the subspace of all zero-mean functions
in L2(Ω). Lastly, H−1(Ω) will be used to denote the dual space of H1

0 (Ω).

2. MODEL OPTIMAL CONTROL PROBLEMS

The Navier-Stokes equations for steady, viscous, incompressible flow can be written in the form
(see [10])

−ν
(
gradu + graduT

)
+ u · gradu + grad p = f in Ω (2.1)

divu = 0 in Ω (2.2)
u = g on Γ, (2.3)

where u, p and f , denote velocity field, pressure, and a given body force, ν is the kinematic viscosity,
and g is given function such that

∫
Γ n ·g dΓ = 0. Uniqueness of the solutions to (2.1)-(2.3) requires

that p ∈ L2
0(Ω).

To state the optimal control problem for (2.1)-(2.3) let J (u, p,g) be a given cost functional where
g denotes the (boundary) control. We define the admissibility set as

U =

{
(u, p,g) ∈ H1(Ω)× L2

0(Ω)×H1/2(Γ); g = g0 +
n∑

i=1

ligi | (u, p,g) satisfy (2.1)-(2.3)

}
(2.4)

where gi ∈ H1/2(Γ); li ∈ Λi, for i = 0, 1, . . . , n; and Λi ∈ R are closed intervals. Then, the problems
we shall consider are given by

seek (u, p,g) ∈ U such that J (u, p,g) ≤ J (v, q,h) for all (v, q,h) ∈ U .



This problem will be used to state the least-squares finite element method for optimal boundary
control. To illustrate the method and to present the numerical results it will be specialized for two
particular model problems that are introduced below.

Both of our model optimal control problems will be considered in the context of the fictitious Driven
Cavity flow, i.e., we assume that Ω = [0, 1]2 and that there is no body force. We use ΓL, ΓR and
ΓB, ΓT to denote the left and the right, and the bottom and the top surfaces of Ω, respectively.
The first problem we shall consider has been suggested in [6] and can be stated as follows.

Given the bottom velocity u|ΓB
= uB, find the top velocity u|ΓT

= uT such that the
separation of the flow occurs at a desired horizontal line location ΓS , see Fig.1.

Fig. 1. Flow separation for the Driven Cavity

As a result, the control objective for this problem is to minimize the following cost functional

J (u, p,g) =
∫

ΓS

|u2|2 dΓ (2.5)

using controls of the form g = g0 + uTg1 where

g0 =
{

(uB, 0) on ΓB

(0, 0) otherwise
; g1 =

{
(1, 0) on ΓT

(0, 0) otherwise
,

see [6]. Note that for this problem we have that
∫
Γ n · gi dΓ = 0 for i = 0, 1.

For the second model problem we consider minimization of the flow vorticity in a subdomain Ω1 ⊂ Ω
(see Fig. 2), i.e., we consider minimization of a cost functional given by

J (u, p,g) =
∫

Ω1

|curl u|2 dΩ . (2.6)



We let Ω1 = [0.75, 1.00] × [0, 0.25] and use Γ̂ to denote the boundary of Ω1. For this problem we
consider controls of the form g = g0 + l1g1 + l2g2 where

g0 =
{

(1, 0) on ΓT

(0, 0) otherwise
; g1 =

{
(0, 1) on Γ̂B

(0, 0) otherwise
; g2 =

{
(1, 0) on Γ̂R

(0, 0) otherwise

The choice of the control here corresponds to suction or injection through the bottom and the right
portions of the boundary of Ω1, i.e., in this case we have that

∫
Γ n · gi dΓ 6= 0 for i = 1, 2.

We note that the functions gi used to define the control g in both model problems are not in
H1/2(Γ). Thus, as in [6], in what follows we assume that these functions are replaced by C∞(Γ)
approximations.

Fig. 2. Vorticity minimization over a subdomain

3. LEAST-SQUARES OPTIMAL CONTROL METHODS

In this section we develop the least-squares approach for the optimal control problem of §2, and
then specialize it for the two model problems. Formulation of the least-squares method will involve
three steps: decomposition of the state equations (2.1)-(2.3) into an equivalent first-order system
followed by definition of a quadratic cost functional and an associated least-squares variational
principle, and lastly, discretization of the resulting variational problem. The need to include a
decomposition step stems from practical considerations. Since least-squares functionals will involve
weighted L2-norms of the residuals of the state equations, the use of a first-order system allows
discretization by means of standard finite element spaces.

To recast the incompressible Navier-Stokes equations as a first-order system one usually introduces
velocity derivatives (or their linear combinations) as new dependent variables. There are several
possible ways to do this. For example, one can choose the new variables according to U = gradu.
This leads to a “velocity flux-velocity-pressure” first-order system; see [5]. Two other natural choices
are to use the symmetric or the skew-symmetric parts of the velocity gradient, i.e, to introduce
1/2(gradu + graduT ), or 1/2(gradu − graduT ) as new dependent variables. The first choice
leads to a “stress-velocity-pressure” first-order system, whereas the second choice corresponds to a



“velocity-vorticity-pressure” first-order system, see [2]-[3], [14], [15]. Among the three systems the
velocity-vorticity-pressure one has been used most often in the context of least-squares methods,
and resulting finite element algorithms are well-documented and studied. For this reason here we
shall stick to this form of the Navier-Stokes equations.

To define velocity-vorticity-pressure form of (2.1)-(2.3) we recall the two-dimensional curl operators
curl and curl given by

curlφ =
(

φy

−φx

)
and curlu = u2x − u1y ,

respectively. To avoid multiplicity of notations we introduce the “vector” products φ × u and
v × u, where φ is a scalar function, and u, v are vectors in R2, by embedding φ, u and v into
the three-dimensional vectors (0, 0, φ), (u1, u2, 0) and (v1, v2, 0) respectively. Then, curlφ = ∇×φ
and curlu = ∇× u. Furthermore, we agree to use curl in both cases and to denote the result as
a vector. Then, we introduce the vorticity ω = curl u as a new dependent variable. In view of the
vector identities

curl curl u = −4u + graddivu ,

u · gradu =
1
2
grad |u|2 − u× curl u

one can rewrite the momentum equation (2.1) as νcurlω+ω×u+grad r = f , where r = p+1/2|u|2
denotes the total head. As a result, we obtain the following first-order velocity-vorticity-pressure
Navier-Stokes equations

νcurlω + ω × u + grad r = f in Ω (3.1)
curl u− ω = 0 in Ω (3.2)

divu = 0 in Ω , (3.3)

along with the boundary condition (2.3).

Following [6] we transform the boundary control problem into a distributed control problem as
follows. For i = 0, . . . , n we let (ωi,ui, ri) denote solutions of the Stokes problem

νcurlωi + grad ri = 0 in Ω (3.4)
curl ui − ωi = 0 in Ω (3.5)

divui = 0 in Ω (3.6)
ui = gi on Γ . (3.7)

Then we set u = û + u0 +
∑n

i=1 liui; ω = ω̂ + ω0 +
∑n

i=1 liωi; r = r̂ + r0 +
∑n

i=1 liri, where
(ω̂, û, r̂) ∈ L2(Ω) × H1

0(Ω) × L2
0(Ω). As a result, the controls li now appear directly in the cost

functional J . Furthermore, in view of the new system (3.1)-(3.3) the admissibility set (2.4) is
replaced by

U =

{
(ω̂, û, r̂, l) ∈ L2(Ω)×H1

0(Ω)× L2
0(Ω)×

n∏
i=1

Λi | (ω,u, r) satisfy (3.1)-(3.3), (2.3)

}
. (3.8)

Then, the optimal control problem for the first-order system (3.1)-(3.3), and (2.3) can be stated as
the following constrained minimization problem:



seek (ω̂, û, r̂, l) ∈ U such that J (ω̂, û, r̂, l) ≤ J (ξ̂, v̂, q̂,k) for all (ξ̂, v̂, q̂,k) ∈ U .

With this control problem we associate a quadratic least-squares functional given by

J(ω,u, r, l) = α1‖νcurlω + ω × u + grad r − f‖2
−1

+ α2‖curl u− ω‖2
0 + α3‖divu‖2

0 + α4J (ω̂, û, r̂, l) , (3.9)

and a least-squares minimization principle given by

seek (ω̂, û, r̂, l) ∈ X×Λ such that J(ω,u, r, l) ≤ J(ξ,v, q,k) for all (ξ̂, v̂, q̂,k) ∈ X×Λ ,

where X = L2(Ω) ×H1
0(Ω) × L2

0(Ω) and Λ =
∏n

i=1 Λi. Note that in contrast to the original con-
trol problem the least-squares optimal control formulation above corresponds to an unconstrained
minimization problem.

A first-order optimality system for the least-squares control problem is provided by the Euler-
Lagrange equation for the functional (3.9). This equation constitutes a nonlinear variational prob-
lem which we write symbolically as

seek (ω̂, û, r̂, l) ∈ X× Λ such that

Q((ω,u, r, l); (ξ,v, q,k)) = 0 ∀(ξ̂, v̂, q̂,k) ∈ X× Λ . (3.10)

The form of Q(·; ·) in (3.10) depends on the particular cost functional J used in the control problem.

The last step in the development of the least-squares control method deals with the discretization
of the problem (3.10). This step involves selection of the finite element spaces, approximation of
the functions (ωi,ui, ri), and replacement of Q(·; ·) by a computable discrete equivalent. The need
for such a replacement stems from the fact that in addition to the usual L2 inner products the form
Q(·; ·) in (3.10) also involves the inner product of the negative order Sobolev space H−1(Ω). This
inner product is not computable and must be replaced by a computable discrete equivalent.

Let us first consider the choice of the discretization. For this purpose here we shall use biquadratic
finite element spaces. More precisely, let Th denote a regular triangulation of the domain Ω into
rectangles and let Q2 denote the set of all functions which are polynomials of degree less than or
equal to 2 in each of the coordinate directions. The parameter h above can be identified with some
measure of the elements in Th, e.g., their diameter. Then we define the space

Qh = {uh ∈ C0(Ω) |uh|� ∈ Q2(�), � ∈ Th} (3.11)

of biquadratic finite elements, and the corresponding vector space

Qh = {uh ∈ Qh ×Qh |uh = 0 on Γ} .

The discrete counterpart of the minimization space X×Λ that appears in the least-squares control
problem is, therefore, given by

Xh × Λ = Qh ×Qh ×Qh ∩ L2
0(Ω)×

n∏
i=1

Λi . (3.12)



Next, the functions ωi, ui and ri are replaced by finite element approximations denoted by ωh
i ,

uh
i and rh

i , respectively. These approximations can be computed using a least-squares method
for (3.4)-(3.6), see [2]. Finally, using a scaling argument, one can infer that for finite element
functions the H−1-norm that appears in (3.9) can be replaced by the weighted L2-norm h‖ · ‖0.
(a more sophisticated approach, suggested in [4], uses discrete negative norms defined by means of
preconditioners for the Laplace’s equation). As a result, for finite element functions we consider
the minimization of the following least-squares functional

Jh(ωh,uh, rh, l) = α1h
2‖νcurlωh + ωh × uh + grad rh − f‖2

0

+ α2‖curl uh − ωh‖2
0 + α3‖div hu‖2

0 + α4J (ω̂h, ûh, r̂h, l) , (3.13)

where uh = ûh + uh
0 +

∑n
i=1 liuh

i , ωh = ω̂h + ωh
0 +

∑n
i=1 liω

h
i , and rh = r̂h + rh

0 +
∑n

i=1 lir
h
i . A

discrete first-order optimality system is then provided by the Euler-Lagrange equation for (3.13),
which we write again symbolically as

seek (ω̂h, ûh, r̂h, l) ∈ Xh × Λ such that

Bh((ωh,uh, rh, l); (ξh,vh, qh,k)) = 0 ∀(ξ̂h
, v̂h, q̂h,k) ∈ Xh × Λ , (3.14)

where vh = v̂h + uh
0 +

∑n
i=1 liuh

i , ξh = ξ̂
h

+ ωh
0 +

∑n
i=1 liω

h
i , and qh = r̂h + qh

0 +
∑n

i=1 lir
h
i .

Next we consider how (3.14) can be specialized to our model problems. For brevity we provide
the details only for the first model problem, the differences in (3.14) for the second one are not
essential. For this problem we may assume without loss of generality that Λ = Λ1 = [0, 1]. Then
the first-order discrete optimality system (3.14) specializes to the following set of equations

seek (ω̂h, ûh, r̂h, l) ∈ Xh × Λ such that

α1h
2

∫
Ω
(νcurl ω̂h + grad r̂h + ωh × uh) · (νcurl ξ̂

h
+ grad q̂h + ξ̂

h × uh + ωh × v̂)dx

+ α2

∫
Ω

div ûhdiv v̂hdx

+ α3

∫
Ω
(curl ûh − ω̂h)(curl v̂h − ξ̂

h
)dx +

+ α4

∫
ΓS

u2v̂2dΓ = 0 for all (ξh,vh, qh) ∈ Xh

0 = a3l
3 + a2l

2 + a1l + a0 . (3.15)

The coefficients ai above are given by

a3 = 2α1‖ωh
1 × uh

1‖2
0

a2 = 3α1

∫
Ω
(ωh

1 × uh
1) · (ω1 × (uh + uh

0) + (ωh + ωh
0)× uh

1)dx

a1 = α1‖ω1 × (uh + uh
0) + (ωh + ωh

0)× uh
1‖2

0



+ 2α1

∫
Ω
(ωh

1 × uh
1) · (νcurlωh + grad rh + (ωh + ωh

0)× (uh + uh
0))dx

+ α4

∫
ΓS

(uh
21)

2dΓ

a0 = 2α1

∫
Ω
(ω1 × (uh + uh

0) + (ωh + ωh
0)× uh

1) ·

(νcurlωh + grad rh + (ωh + ωh
0)× (uh + uh

0))dx

+ α4

∫
ΓS

(uh
2 + uh

20)u
h
21dΓ .

It is not difficult to see that once a basis for the space Qh is selected, (3.15) corresponds to a
nonlinear system of algebraic equations that must be solved in an iterative manner. Although the
explicit form of (3.15) is quite formidable this system also has some quite valuable computational
properties. First, in a neighborhood of a minimizer for (3.13) the Jacobian of (3.15) is necessarily
symmetric and positive definite. Second, since the attraction ball of Newton’s method is nontrivial,
one is assured the existence of an initial approximation for the Newton’s method, such that both the
Newton’s method will converge, and the linearized system will be symmetric and positive definite.
As a result, the linearized system can be solved using efficient and robust iterative methods, such
as conjugate gradients, i.e., the method can be implemented without assembly of the discretization
matrix, even at the element level. In particular, here we have implemented the Newton’s method
for the solution of (3.15) using conjugate gradients with Jacobi preconditioning

4. NUMERICAL RESULTS

This section presents numerical results obtained with the least-squares method for optimal control.
All computations were carried on using biquadratic finite elements defined with respect to a uniform
triangulation of the unit square Ω into rectangles. In particular we use triangulations of 19 by 19
rectangular elements, i.e., the number of grid points in each coordinate direction equals 39. The
nonlinear algebraic system is solved using Newton’s method with tolerance set to 0.5/105.

In the first experiment we consider the separation problem for the Driven Cavity flow. For this
experiment weights have been chosen according to α1 = α2 = α3 = 1; α4 = 1/h. The separation
line ΓS is chosen to be a horizontal line through the geometric center of the cavity, and uB is set
equal to 0.1 As a result, the expected optimal value for uT is 0.1. After three iterations Newton’s
method converged within the prescribed tolerance and the computed approximation for uT was
found to be 0.0989. On Fig. 3 computed optimal flow is compared with a Driven Cavity flow
corresponding to the boundary condition uΓ = (0.1, 0) on ΓT and ΓB, and zero otherwise. As
one can see from the plots presented in Fig. 3, the flow computed using the least-squares optimal
control method is in a very good agreement with the expected flow.

In our second experiment we consider minimization of the vorticity over a prescribed subdomain
Ω1 using suction or injection through the bottom and the right portions of the boundary of Ω1.
For this example all weights have been chosen equal to 1. We have carried computations for values
of the Reynolds number up to Re = 612.6. For higher values of Re Newton’s method diverged,
which hints at the possibility that the optimal control problem may not have a unique solution, or a
solution at all. This is consistent with the analyses of [6], where existence of optimal solutions for a



similar problem has been established under the assumption that the Reynolds number is relatively
low. Our numerical results are presented on Fig. 4. which contains contour plots of the vorticity
variable for increasing values of Re. Directions of the arrows on each plot indicate the combinations
of suction and/or injection that correspond to the optimal solution computed with the least-squares
method. We see that these combinations vary with the Reynolds number. For example, for low
and high values of Re optimal solutions are obtained using injection along the vertical boundary
of Ω1 and suction along the horizontal boundary of this domain, whereas for intermediate values
of Re the opposite holds true.
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Fig. 3. Velocity field, vorticity and pressure contours for computed and optimal flows: Re = 10, uB = 0.1,
separation at y = 0.5.
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Fig. 4. Vorticity contours for different values of Re  for the second model problem


